AI学习笔记
项目 | 内容 |
---|---|
操作系统版本 | Centos x64 7 |
内存 | 16G |
主机名HOSTNAME | docker.example.local |
系统分区规划
用途 | 卷组名称 | 磁盘|卷 | 挂载点 | 空间大小 |
---|---|---|---|---|
启动分区 | /dev/sda1 | /boot | 500M | |
系统卷组 | /dev/centosvg | lvroot | / | 10G |
lvtmp | /tmp | 4G | ||
lvvar | /var | 5G | ||
lvusr | /usr | 6G | ||
lvswap | swap | 2G | ||
Docker卷组 | /dev/dockvg | lvdock | /var/lib/docker | 50G |
按照操作系统的空间规划安装Centos 7操作系统,配置相关服务。
修改vi /etc/selinux/config
文件:
SELINUX=disabled
:wq
setenforce 0
配置本地yum源
mkdir -p /media/dvd
mount /dev/sr0 /media/dvd
cd /etc/yum.respo.d/
vi local.repo
[dvd]
name=dvd
baseurl=file:///media/dvd
enabled=1
gpgcheck=0
:wq
yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
更新 yum 缓存:
yum makecache fast
yum -y install docker-ce
vi /etc/docker/daemon.json
{
"registry-mirrors": ["http://hub-mirror.c.163.com"]
}
systemctl enable docker
systemctl start docker
docker run hello-world
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo |tee /etc/yum.repos.d/nvidia-docker.repo
yum install -y nvidia-container-toolkit
systemctl restart docker
docker volume create portainer_data
docker run -d -p 9000:9000 -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer
打开浏览器连接http://dockerIP:9000/
按照要求创建用户
进入控制台dashboard:
docker pull tensorflow/tensorflow # latest stable release
docker pull tensorflow/tensorflow:devel-gpu # nightly dev release w/ GPU support
docker pull tensorflow/tensorflow:latest-gpu-jupyter # latest release w/ GPU support and Jupyter
docker run -it --rm tensorflow/tensorflow \
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
详细用法参考:官方文档